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by H. B. WHITTINGTON

Abstract. In sphaeroidal enrolment, the exoskeleton formed a closed capsule. Well known in post-Cambrian

trilobites, many Cambrian species, in addition to Agnostina and eodiscoids, also enrolled in this manner.

Characteristic features of such forms (other than Agnostina and eodiscoids) are: a fulcrate thorax; the fulcrum

relatively close to the axis; the facets of the anterior segments large and backwardly directed; more posterior

facets smaller, steeper, and less so directed. These features are described in detail in Beltella depressa and

Peltiira scarahaeoides scarabaeoides, and were shared by other olenids, including Triarthnis, in which

sphaeroidally enrolled specimens are known. Other olenids, in which the fulcrum was distant from the axis,

may have enrolled in the cylindrical manner, which left a lateral gap in the enrolled exoskeleton. The
signihcance in classification of these and other characters of the thorax has yet to be evaluated in Olenidae and

other groups.

Sphaeroidal enrolment, in which the exoskeleton forms a closed subspherical or ovoid form,

is familiar in calymenids and Pluicops. The tips of the thoracic pleurae and edge of the pygidium

were tucked inside the cephalic doublure (calymenids), or in phacopids were accommodated in

vincular notches and a groove in the cephalic doublure (e.g. Whittington 1992, pis 89, 115;

Chatterton and Campbell 1993, figs la-f, 2a-c, e-g). In these and many other trilobites which

enrolled in the same fashion, the thorax was fulcrate, the fulcrum situated in the adaxial half of the

pleural width (tr.). The horizontal, inner portion of the pleura gave a precise, straight hinge, the

anterior articulating flange fitting beneath the posterior flange of the preceding segment. The outer

portion of the pleura was bent down and faceted, so that these portions overlapped one beneath the

other in enrolment. The coaptative devices associated with the close fit between the tips of the

pleurae and margin of the pygidium with the cephalon have been described in many species (e.g.

Clarkson and Henry 1973; Henry and Clarkson 1975; Clarkson et ai 1977; Lesperance 1991;

Chatterton and Campbell 1993). It is emphasized here that not only were such devices coaptative,

but that the entire form of the exoskeleton was necessarily so - the convexity of its diflerent

portions, the width (tr.) and inclination of the outer portions of the pleurae, the size and inclination

of the facets, and the shape of the cephalon vis-d-vis that of the thoracic segments and pygidium.

Thus, for example, the anterior arch in the border of the cephalon, mentioned by Clarkson (1966,

p. 82) as allowing the entry of respiratory and feeding currents when the animal was extended on
the sea floor, must also have been shaped to accommodate the thoracic segments and pygidium in

enrolment.

Sphaeroidal enrolment is known not only in the post-Cambrian trilobites referred to above, but

also in the Lower Cambrian Crassifimhra (Palmer 1958), in Middle Cambrian ellipsocephalids

(Westergaard 1936, pi. 11, fig. 9a-c; Geyer 1990) and in the Upper Cambrian examples described

by Stitt (1983). The thorax was fulcrate, the outer portions of the pleurae faceted, and Palmer

(1958, text-fig. 5) illustrated stops in the pleural doublures which limited overlap. Stitt emphasized
the stronger backward deflection of the outer portions of the pleurae of the more anterior segments,

the differing size and inclination of the facets, and that the flexure between the cephalon and
anterior thoracic segments was strong. In Agnostina and eodiscoids (see Bergstrom 1973, p. 30) the
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short thorax enabled the flat doublure of cephalon and pygidium to be brought into contact

(Agnostina), or that of the pygidium to fit close inside the cephalic doublure (eodiscoids). Robison
(1964, p. 515) described a vincular groove in the pygidial doublure of Agnostina, into which the

inner edge of the cephalic doublure fitted on enrolment; Rushton (1966, p. 15) described vincular

structures in eodiscoids. In both groups the thorax was fulcrate, but the outer portions of the

pleurae did not overlap in enrolment, but fitted edge-to-edge against each other and the edges (or

facet) of the cephalon and pygidium. To enable this fit the outer portions of the pleurae were narrow
(tr.) and cut off by straight or curved edges anterolaterally and posterolaterally (Rushton 1966, text-

figs 6, 8; Hunt 1967; Jell 1975; Whittington 1992, pis 55, 73). Robison (1964, p. 515) commented
on the special shape of the segments in Agnostina and the lack of a doublure; the extremely narrow
doublure in Pagetia, and the form of the segments were described by Jell (1975, p. 62).

Sphaeroidal enrolment, then, is characteristic of many Cambrian trilobites. However, Fortey and
Owens (19916, p. 77) expressed the view that complete enrolment of the exoskeleton of Beltella

depressa was not possible because flexure between posterior thoracic segments was limited and
because these segments and the pygidium were not shaped to fit closely beneath the cephalon. Yet
the fulcrate thoracic exoskeleton exhibits features noted above in trilobites that enrolled

sphaeroidally, in particular the strong backward deflection of the large facets of anterior segments.

Whether or not B. depressa could enroll sphaeroidally depended on the form of the entire

exoskeleton. Here I contend (Text-fig. 2), on the evidence of the least flattened specimens, that the

free cheeks were more steeply inclined than in Fortey and Owens’ restoration (19916, fig. 2), and
that the outline of the thorax was slightly less convex abaxially. The convexity of the exoskeleton

in Text-figure 2 is similar to that given to the closely related species Leptoplastides salteri by Fortey

and Owens (1991a, fig. 9), and to that of Peltura scarabaeoides scarahaeoides. The illustrations of the

latter species (PI. 2) show the differences in appearance between an exoskeleton that has been

relatively slightly flattened, and those of B. depressa (PI. 1 ; Text-fig. 1e, h) which were originally of

a similar convexity but have suffered much greater compaction. The differing size, shape and
orientation of the facets on successive segments of these species appears to be coaptative, and to

have enabled the greater flexure between anterior sclerites (and lesser between posterior sclerites)

that facilitated the close-fitting enrolment.

Bergstrom (1973, p. 21) discussed enrolment in Olenidae, and concluded that many, possibly all,

species were able to enroll. Clarkson’s (1973, text-figs 2d-f, 5a-c, 6a-c, 7a-c, 8a-c) restorations

revealed the strong convexity of the cephalon in certain species, and that of the entire exoskeleton

was shown in Fortey’s (1974) plates, and by those of the silicified material of Ludvigsen (1982). The
latter author (p. 61) commented on the strong convexity of a species of Paraholmella, and the

different appearance such material would have if it were flattened in shale. Among other details the

doublure beneath the tips of the thoracic pleurae in Parabolinella (Ludvigsen 1982, pi. 49, figs o, cj)

are shown, and have a raised inner edge which may have provided a stop to enrolment at the

posterior edge. In species of Balnibarbi (Fortey 1974, pi. 2, fig. 3; text-fig. 4), Parabolinella

EXPLANATIONOF PLATE 1

Figs 1-4. Beltella depressa (Salter in Murchison. 1859). 1-3. Lower Tremadoc, Clarenville Formation, south

of mouth of Trilobite brook along south-west shore of Random Island, half-way between brook and Felly’s

Mill, Newfoundland. 1-2, NHMIt 20246; 1, internal mould of cranidium and partially disarticulated,

incomplete thorax; dorsal view, articulating half ring of first segment has been exposed; x 3; 2, oblique view

of left side, showing mould of doublure (d) of posterior border of cranidium and left pleurae of segments

1-8, axial (a) and fulcral (f) articulating processes, and further preparation of tip of pleura of segment three

(numbered) to show part of doublure (d) lying on facet of pleura of segment 4; x 8. 3, NHMIt 20229;

posterior portion of external mould showing sculpture of last two thoracic segments and pygidium; x 5.

4. BRSMGCd 550a; Breadstone Shales, Gloucestershire; original of Fortey and Owens 19916, pi. 1, fig. a;

flattened exoskeleton lacking pygidium; x 3.
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TEXT-FIG. 1a-h, Beltella depressa (Salter in Murchison, 1859); Lower Tremadoc; Gloucestershire, England.

A-D, BRSMGCb 4400, original of Curtis 1968, pi. 9, fig. a; Micklewood Beds; cranidium, internal mould,

dorsal, left lateral, anterior and posterior (arrow points to fulcrum) views, respectively; x 3. e-g, BRSMGCc
860a, original of Fortey and Owens 1991fi, pi. 1, fig. b; Breadstone Shales; E, dorsal view; x 3; f-g, oblique

right lateral views of thoracic pleurae 1-7 (segments 1, 5 numbered), and pleurae 8-12 (segment 9 numbered)

and pygidium, respectively; x 8. ti, BRSMGCc 2010, original of Fortey and Owens 1991fi, pi. 1, fig. d;

Breadstone Shales; dorsal view; x 2-6.
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(Ludvigsen 1982, fig. 49a-s), Anaximander (Fortey 1974, pi. 21, fig. 3), BienviUia (Fortey 1974, pi.

22, fig. 1 ) and Triartimis (Ludvigsen and TufTnell 1983, pis 2-3) the thorax was fulcrate, the fulcrum

one-third or less of the width (tr.) of the pleura from the axial furrow. The facet on the anterior four

thoracic segments was large and backwardly directed, facets on succeeding segments were less

backwardly directed. I consider that in species of the genera mentioned above sphaeroidal

enrolment was probable. The only examples known to me of such an enrolled holaspid form are

those of Triarthnis figured by Ross (1979, pi. 1, figs 1-12; for justification of this specific name
see Ludvigsen and TufTnell 1983, p. 571); Ludvigsen (1982, fig. 50c) showed an enrolled meraspid

of Parabolinella panosa, and Ludvigsen and TufTnell (1994, pi. 3g) figure a partially enrolled

Triarthnis. Fortey (1974, p. 27, fig. 4) considered that Balnibarhi piilvurea could enroll, presumably

completely.

As Bergstrom (1973, p. 21) recognized, some olenids had a thorax of a different form.

Westergaardites (Henningsmoen 1957, fig. 18) had 19 thoracic segments, each with a wide (tr.),

horizontal inner portion and a narrow, spinose outer portion. In Leptoplastiis norvegicus

(Henningsmoen 1957, pi. 15, fig. 7), the inner, horizontal portion of each pleura was wide (tr.), the

outer narrow and faceted, as it was in Ctenopyge modesta (Henningsmoen 1957, pi. 19, figs 5, 9-10);

in C. pecten (Westergaard 1947, pi. 3, fig. 12) there were long pleural spines on the thorax. Such

species may not have formed a closed capsule on complete enrolment, rather there would have been

a lateral opening partially covered by spines. Bergstrom (1973, p. 14, fig. 8b) referred to this type

of enrolment as cylindrical, illustrating it by a drawing of Fallotaspis (Olenellina), and a model
of Ctenopyge (1973, pi. 1, fig. 8). Figured examples of this type of enrolment are rare, but one is

of Remopleurides perspicax (Nikolaisen 1983, pi. 5, figs 1-5).

How important thoracic characters may be in classification of Olenidae, including the

controversial subfamilial divisions (Fortey and Owens 1991A, p. 74), is an open question. The above

discussion suggests that the position of the fulcrum, close to, or far from, the axial region, may be

a useful character. Fortey (1974, p. 13) recognized the pleural node, a triangular inflated area of the

posterior pleural band adjacent to the axial furrow, as characteristic of Balnibarbiinae. Ludvigsen

and TufTnell (1994, p. 192, fig. 12) regarded a similar inflation as a cardinal character in

Triarthrinae. They interpreted this inflation as bounded posteriorly by a posterior pleural furrow,

but this furrow is the change in slope between the inflation and the short (exs.) posterior articulating

flange; this change in slope dies out distal to the fulcrum and is not analogous with the true pleural

furrow. The pleural node is not developed in Beltella or Peltwcr. in the former the posterior pleural

band is but gently inflated; mPeltnra (PI. 2, fig. 3) more strongly, and separated by a distinct change
in slope from the posterior flange.

SYSTEMATICPALAEONTOLOGY
Family olenidae Burmeister, 1844

Genus beltella Lake, 1919

Beltella depressa (Salter in Murchison, 1859)

Plate 1 ; Text-figures 1-2

Material. I accept the synonymy of this species as given by Fortey and Owens (I991/i), and hence include

material from the Breadstone Shales and Micklewood Beds of the Tortworth inlier. Gloucestershire, and from
the Clarenville Formation, Random Island, Newfoundland, strata which are of Lower Tremadoc age.

Morphology. Fortey and Owens (I991A) described this species and referred to the effects of flattening on the

original appearance of the exoskeleton; additional details are given herein and used in a new reconstruction

(Text-flg. 2). The least flattened cranidium known (Text-fig. 1a-d) shows the minimum convexity of the

cephalon, and that the posterior border had a horizontal inner portion, and was bent down at the fulcrum into

a wider (tr.), downsloping outer portion. The free cheek conformed to this downslope and hence appears

narrow (tr.) in dorsal view in one of the less flattened specimens from the Breadstone Shales (Text-fig. In); the

trace of the genal spine continues the curve of the lateral border. In the original of Plate I, figure 4, the free



382 PALAEONTOLOGY,VOLUME39

TEXT-FIG. 2. Beltella depressa. a~b, restoration of extended exoskeleton in dorsal and right lateral views, c-d,

restoration of enrolled exoskeleton in anterior and right lateral views. Heavy dashed line indicates margin of

cephalon and doublure of cephalic border in section; parts of dorsal exoskeleton cut away to reveal tips of

thoracic pleurae and edge of pygidium, and lateral view of first thoracic segment; interior of exoskeleton

stippled. Abbreviations: a, articulating furrow; d, doublure of occipital ring; f, facet; hr, half ring. Scale bar

represents 10 mm.
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cheeks are spread out and pushed inwards, and the genal spine projects slightly outward, as it does in the

originals of Stubblefield (in Smith 1933, p. 367, pi. 34, figs 10-1
1 ). This divergence from the lateral border may

be the result of flattening. The mould of the doublure of the anterior border is preserved in the original of Text-

figure 1 h, as a narrow channel, and a similar narrow channel beneath the outer portion of the posterior border

(PI. 1, fig. 2) is the mould of the doublure. It is presumed that a narrow doublure, convex ventrally, also

underlay the lateral border.

The thorax of 12 segments (Text-fig. 1e, h) was fulcrate, the inner portion of each pleura horizontal, the

outer portion bent down at the fulcrum to slope in conformity with the posterior cephalic border. The long

(sag.) articulating half ring of the first segment has been exposed in the partially disarticulated, flattened,

incomplete Clarenville specimen (PI. 1, fig. 1). In the succeeding four segments the axial rings are broken to

expose a mould of the doublure of the ring, or of the half ring of the succeeding segment, or of a combination

of both, as is the case in broken rings of other moulds (Text-fig. 1e, h). Each half ring was of similar length

(sag.) to the axial ring in front of it, so that it reached the posterior slope of the articulating furrow. This furrow

had a slight curvature, concave forward in dorsal view, a gentle posterior slope in profile, rising anteriorly

vertically to the half ring. The anterior edge of the inner portion of each pleura bore an articulating flange (PI.

1. fig. 2), which fitted beneath the posterior cephalic border or the posterior flange of the segment in front. The
posterior flange is not visible in the internal mould (PI. 1, fig. 2) because this edge is broken; on the external

surface (Text-fig. 1f-g) the short (exs.) flange is defined faintly behind the gently convex posterior pleural band.

An axial articulating process was situated where the axial furrow deepens at the posterior, adaxial end of the

inner pleural portion (PI. 1, fig. 2) and a fulcral process at the anterior abaxial end, with corresponding sockets

at the extremities of the adjacent edges. The outer portion of each pleura had the posterior edge backwardly

and outwardly directed, backwardly most strongly on the first segment, progressively less so on succeeding

segments (PI. 1, fig. 2; Text-fig. 1e-g). The anterior edge of the outer portion of the pleura was the steeply

inclined facet, which appears to have had a concave surface. The size and shape of the facet changed along the

thorax, those of the first three segments being largest, the posterior edge curved back so that the pleural furrow

terminated against it. In more posterior segments the posterior edge of the facet was less strongly backwardly

directed, and the pleural furrow extended behind the facet to die out close to the pleural tip. This change in

form and direction of the facet meant that the shape of the outer portion of the pleura changed progressively

backward (Text-fig. 1e-g), from short (exs.) and blade-like on the first segment to longer (exs.) and subparallel-

sided posteriorly. The abaxial margin of the pleural tip of segments 4-12 was straight, the edge not sharp, but

blunt as the dorsal exoskeleton curved under to meet the doublure. This blunt edge was terminated anteriorly

by the facet, and, because the facet was concave, the anterior tip of the pleura curves forward at the

posterolateral margin of the facet. Compaction caused the outer portions of some of the pleurae to be curved

slightly, concave upwards, and flattened the tip. In such cases (e.g. segments 4-5, of PI. I, fig. 2; left side of

Text-fig. 1e) this forward curvature at the anterior tip was exaggerated. I consider that this forward

prolongation (Fortey and Owens, I991fi, p. 73) was too slight to have inhibited the pleurae in sliding one below

the other in enrolment. The form of the pleural doublure could not be revealed completely in the moulds, but

the fragment preserved (PI, 1, fig. 2) suggests that it may have been short (exs.) proximally, but extended

beneath the tip, the inner margin a U-shaped curve, as in Pehiira (PI. 2, fig. 5). The width (tr.) of the inner and
outer portion of each pleura is approximately equal in segments 3-12; in the first segment the inner portion

is markedly narrower than the outer, in the second segment less so. Hence, the outline of the tips of segments
1-6 was only slightly convex outward (Text-fig. 1h; PI. 1, fig. 4), while segments 7-12 decreased progressively

backwards in width. The outline of the thorax was like that in the original of Text-figure 1 h, not more strongly

bowed outward as in the flattened original of Text-figure 1e.

The axis of the pygidium is clearly defined in the English specimens, less so in those from Newfoundland. The
fulcrum lies at more than half the width of the anterior margin of the pleural region, and a facet (Text-fig. 1g)

truncates the anterolateral corner of the region, the external surface being concave. The edge of the pleural

region, laterally and posteriorly, appears to curve down and become vertical distally, the margin continuing

the line of the pleural tips. The doublure of the pygidium is not known; possibly it was narrow, curled beneath

the margin. The external surface (PI. 1, fig. 3; Text-fig. 1g) bears fine, anastomosing ridges, subparallel to the

margin and arranged in a curve concave forward on the pleural region. Similar ridges, in a curve concave
forward, are present on the axial rings of the thorax, and parallel to the margin of the pleural tips. These ridges

are poorly preserved, but appear to be asymmetrical terrace ridges, the steep slope facing inwards (cf. Rushton
1982, p. 52).

Enrolment. The new reconstruction (Text-fig. 2) resembles the original of Text-figure 1 h, rather than

the more flattened and cracked specimens from Gloucestershire (Text-fig. 1 e) and Random Island
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(Fortey and Owens 1991^, pi. 1, figs e-f), upon which Fortey and Owens’ reconstruction appears

to have been based. The convexity of the exoskeleton in Text-figure 2 is not unusual for some
olenids, being similar to that of reconstructed olenid cephala (Clarkson 1973), to that shown by
Peltura (PI. 2, figs 1-2, 4), and to that given by Leptoplastides by Fortey and Owens (1991 g, fig. 9).

As a consequence of such convexity, the outline of the posterior thoracic segments and pygdium is

similar to that of the inner edge of the cephalic doublure (Text-fig. 2), which approximated to that

of the anterior and lateral border furrows. Thus I consider that the exoskeleton was able to enroll

completely, the margins of the outer edges of the thoracic pleurae and pygidium having fitted

against the inner surface of the cephalic doublure, the exoskeleton forming a closed capsule. In

order to achieve this closure, some 220° of flexure had to take place between cephalon and
pygidium, the first 90° between the cephalon and segment 4, the flexure between segments 4 to 12

and the pygidium being less. The strong backward inclination and large size of the facets of the

anterior segments, and progressive reduction in the backward inclination in successive segments is

coaptative, allowing these differing amounts of flexure between sclerites. The concavity of the facets

facilitated their sliding beneath the convex doublure of the posterior cephalic margin and outer

portions of the pleurae, and the tips of the pleurae fitted one behind another in the fully enrolled

position. The steeply down-turned edge of the pygidium came to rest against the inner edge of the

cephalic doublure. If this doublure bore terrace ridges, these ridges may have interlocked with those

on the pleural tips and edge of the pygidium. An analogous change of form of the size and direction

of the facets is seen in Peltura (PI. 2, figs 3^), and I think it probable that this species enrolled to

form a closed capsule in much the same manner. In Triarthnis beckii (Ross 1979, pi. 1, figs 3, 6, 9,

12) there were 14 thoracic segments, so that some 250° of flexure between cephalon and pygidium

was necessary for full enrolment. In lateral view the exoskeleton had a more nearly circular outline

than that suggested here for Beltella, and the first 90° of flexure was achieved between cephalon and
third segment.

Remarks. Fortey and Owens (1991fi, p. 74) considered that the thoracic segments of Beltella were

like those assigned to Acerocare tuUbergi by Henningsmoen ( 1957, pi. 30, fig. 9). However, the inner,

horizontal portion of these latter segments constitutes most of the width (tr.), only the outermost

portion is bent down, the tip bearing two short spines one on the end of each pleural band. Each
band had a ridge along the crest, and the anterior band bore a narrow (exs.) articulating flange. The
thorax of A. tullbergi is thus different from that of B. depressa.

Fortey and Owens (1991fi, p. 74) gave their reasons for rejecting the subjective synonymy of

Beltella and Leptoplastides, which included the ‘peculiar structure’ of the thorax of Beltella. These

authors’ (1991 a, p. 449, figs 8c-j, 9) illustrations of Leptoplastides salteri, the type species, show that

in the relative width of inner and outer portions of the pleurae, and size and shape of the pleural

facets, the two type species are similar. The distinctions between them lie in the median axial spines

of the occipital ring and thoracic segments, and the blunt posterolateral pleural spines of L. salteri.

EXPLANATIONOF PLATE 2

Figs 1-8. Peltura scarahaeoides scarahaeoides (Wahlenberg, 1818), PMO139.137; Upper Cambrian, zone

2d}’-^; Royken, Norway. 1-4, 6, 8, latex cast of external mould; 1-2, 4, anterior, right lateral, dorsal views;

X 5; 3, oblique, left lateral view of thorax and pygidium. showing (arrowed) sharp flexure at fulcrum of right

pleurae, and left pleurae; x8; 6, oblique left posterolateral view of posterior six segments of thorax and

pygidium with three spines at margin (arrowed); x 8; 8, oblique anterolateral view of right free cheek and

right pleurae of anterior three thoracic segments; x 8. 5, incomplete, isolated left pleura of segment on same

slab, excavated to reveal doublure beneath spinose pleural tip; inner margin of doublure arrowed;

a = anterior articulating flange; p = posterior flange; x8. 7, isolated free cheek on same slab, oblique

anterolateral view; eye lobe broken; lateral border partially removed to show flat doublure, anterior arch

of border arrowed ; x 8.
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Whether or not such distinctions are regarded as of generic significance is a matter of opinion; here

I retain Beltella, albeit with doubt. Small pleural spines are present, for example, in the degree three

meraspid stage of Triarthnis beckii, but are lost in later meraspid stages and the holaspid

(Whittington 1992, pis 38fi, 39c, 40).

Genus peltura Milne Edwards, 1840

Peltura scarabaeoides scarabaeoides (Wahlenberg, 1818)

Plate 2

Material. PMO139.137, a small slab of dark grey calcareous mudstone showing the external mould of an
almost complete exoskeleton, and abundant disarticulated sclerites of olenids. Most numerous are those of P.

s. scarabaeoides. but cranidia, free cheeks and pygidia of Sphaerophthalmus humilis. and one thoracic segment
of Cteiiopyge type also occur, I conclude that this slab, from a loose boulder found opposite the entrance to

the Slemmestad cement factory, Royken, Norway, came from rocks of the lower part of zone Vc(2d}’-^)

(Henningsmoen 1957, p. 299, pi. 5, Vc).

Description. The external mould of the complete exoskeleton closely resembles the original of Henningsmoen
(1957, pi. 26, fig. 1), and is less disarticulated and more complete. In anterior view (PI. 2, fig. 1) the steep

downward curvature of the left fixed cheek is visible, the right free cheek having been displaced upwards and
rotated during preservation. In its original position, the genal field of the free cheek would have sloped

vertically adjacent to the lateral border, and the lateral and anterior borders would have been strongly arched

in anterior view, as the detached free cheek shows (PI. 2, fig. 7; cf. Clarkson 1973, text-fig. 4a). The doublure

of the free cheek is flat peripherally, upturned at the inner margin beneath the border furrow. In his description

of the eye of this species, Clarkson ( 1973, p. 746) noted that the external surface of the cornea was smooth,

as it is in the complete specimen (PI. 2, fig. 8) and in other, detached free cheeks.

The thorax was of 12 segments, and is disarticulated behind the sixth segment so that the seventh is partly

concealed; only the left half of the twelfth segment is preserved. The inner portion of the pleura was narrow

(tr.), horizontal, the outer portion sloping steeply, the anterior edge of the inner portion a flange which fitted

beneath the posterior articulating flange of the segment in front. This short (exs.) posterior flange is defined

by a change in slope from the inflated posterior pleural band (PI. 2, fig. 3). A small, convex articulating process

was situated at the anterior edge of the inner pleural portion, at the fulcrum, and fitted into a socket in the

segment in front. The outer portion of the pleura bears a facet, the posterior edge of which, on the anterior

segment, is directed strongly backward so that the pleural furrow ends against it distally. In the anterior four

segments this backward inclination is progressively reduced so that the pleural furrow lies behind the facet in

the fourth and succeeding segments (PI. 2, fig. 3). Thus the facet was largest and most strongly backwardly

directed on the anterior segments, proportionally smaller on more posterior segments. The tip of each segment

was rounded anteriorly, drawn out into a short spine at the posterolateral angle. The doublure beneath the

pleural tip has been exposed in an isolated segment (PI. 2, fig. 5), the inner edge curved convexly outward, a

narrow band extending inward beneath the facet and at the posterior edge, presumably narrowing to end

before reaching the fulcrum. This specimen shows also the short (exs.) articulating flange on the anterior edge

of the inner portion of the pleura, which fitted below the equally short posterior pleural flange.

The pygidium is like that of Henningsmoen’s ( 1957, pi. 26, fig. 1) specimen, with a distinct first axial ring,

the pleural region truncated anterolaterally by a facet and posterolaterally curving steeply downward. The
pleural spines are partially preserved on the left side (PI. 2, fig. 6), and were directed almost vertically

downward. Anastomosing lirae run parallel to the posterolateral margin of the pygidium, and curve outward

into the base of the pleural spines. Isolated pygidia in the slab also show these spines.

In the external surface of the axial exoskeleton the occipital furrow is shallow, the sigmoidal SI faint, and

S2 barely discernible. A low median tubercle is present on the occipital ring, and on each axial ring of the

thorax, at the midleiigth in anterior segments, closer to the posterior edge in more posterior segments. The
anterolateral portion of the occipital ring is gently inflated, as is the same portion of the anterior five or six

thoracic axial rings. Terrace ridges, the steep slope outward-facing, are present on the outer edge and doublure

of the convex cephalic border, strong and subparallel (PI. 2, figs 7-8). A prominent terrace ridge, the steep slope

backward-facing, bounds the posterior edge of the facet of each thoracic segment, with an additional one or

two ridges distally curving back into the base of the spine. Lirae (symmetrical ridges) on the pleural region of

the pygidium are referred to above, and are also present, curving concavely forward, on the axial ring and
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terminal portion of the axis. The lirae are strongest towards the margin of the pygidium, where they appear

to become terrace ridges with the steep slope forward facing.

Remarks. Although this specimen retains much original convexity, the anterior view (PI. 2, fig. 1)

shows a slight upward and outward slope of the inner portions of the thoracic pleurae, and the outer

portions have a slightly concave profile distally. I attribufe this, and the detachment and upward

rotation of the right free cheek, to compaction. The original form would have been similar to that

shown in Text-figure 2, and I consider a similar sphaeroidal enrolmenf to have been possible. In

the closed position, the terrace ridges on the down-turned pygidial border, and on the pleural tips,

would have been approximately parallel to those of the cephalic doublure. Interlocking of these

ridges and grooves may thus have occurred. Bergstrom (1973, pi. 3, figs 1-2) figured an

asymmefrically flattened specimen, and used a paper model (1973, pi. 1, fig. 7) fo show sphaeroidal

enrolment in this species.
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